Elastoplastic Large Deflection»AhaIysis
of Three-Dimensional Steel Frames
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Abstract: A beam element is presented for analysis of the elastoplastic large deflection of three-dimensional (3D) frames that have steel
members with semirigid joints. A plastic hinge type formulation was employed, combining the:“modified incremental stiffness method,”
the updated Lagrangian formulation, and numerical integration about the end sections of the element. The end sections of the element are
discretized into small areas to estimate the plastic deformations of the element. The elastic and plastic deformations of the element are
treated separately. The behavior of a semirigid joint is modeled as the element-end compliance. The method can treat comprehensively the
plastic deformations due to torsion and warping. Considering the assumptions of the method, a four-element approximation for a member
" gives excellent results for a 3D analysis of semirigid and pin-connected steel frames as well as for rigid frames. The adeguacy of the
method is verified by comparing the results with experimental ones obtained by the writer. Some examples are presented to demonstrate

the accuracy and efficiency of the method.
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Introduction

" 'The ultlmate strehgth arid the restoring force characteristics under
'three-dlmenswnal loading are fundamental and important petfor-
mance charactensncs of a bulldmg frame. A large number of
analysis methods to examine the performance of beam columns
and frames have been proposed (Al-Bermani and Kitipornchai
1990; Kouhia and Tuomala 1993; Liew ‘et al. 1993; Hall and
Challa 1995; Tzzuddin and Smith 1996; Teh and Clarke 1999).
Those methods can be classified into two types: plastic zone and
plastic hinge type formulations. One of the merits of the plastic
hinge type formulation is the separate treatment of elastic and
-plastic deformations. This means that a geometrically nonlinear
stiffness can-be obtained by the principle of stationary potential

- energy, and the “modified incremental stiffness method” (Strick-
lin et al. 1971; Washizu 1975) can be used as 'the numerical pro-
cedure. This is because the plastic strain energy is completely
dissipated in the zero-length plastic hinges and does not affect the
internal force vector of the frame. The modified incremental stiff-
ness method is a self-correcting incremental procedure using the
total elastic strain energy of a deflected structure. Hence, the plas-
tic hinge type formulation can provide good accuracy as well as
simplicity if the plastic deformation increment vector can be ob-
tained precisely. In addition, the use of the plastic hinge method is
suitable for frames with semirigid joints because a semirigid joint
can be regarded as a kind of plastic hinge. However, the possibil-
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ity of use of the plastic hinge method for a problem that contains
section warping has not been shown yet.

This paper proposes a new type of accurate beam clement for
analysis of the elastoplastic large deﬁectxon of three-dimensional
(3D) frames that have steel members with semirigid joints. The
element is of the plastlc hinge type The end sections of the ele-
ment are discretized into small areas (ﬁbers) to estimate the plas-
tic deformation of the element. The elastic and plastic deforma-
tions of the element are treated separately The elastic nonlinear
tangent stiffness matrix of the element is obtamed by the principle
of stationary potential energy using the updated Lagrangian for-
mulation, while the plastic deformation increments are estimated
by the tangent coefficient matrix obtained by numerical 1ntegra-
tion of the hardening moduli of the fibers about thé end sectioris.
Therefore, the method can treat comprehenswely the plastlc de-
formations due to torsion and warping, ’

In contrast, many other investigations concerned with ‘semi-
rigid joints have been conducted (Lui and Chen 1986, 1987 Al-
Bermani and Kitipornchai 1992; King and Chen’ 1994 Shugyo
et al. 1996; Shakourzadeh et al, 1999). It seems to the writer that
the node zero-length joint element proposed by Shugyo et al.
(1996) and by Shakourzadeh et al. (1999) is the most simple and
efficient method for modeling the 3D behavior of semirigid joints.
In this paper, the tangent stiffness matrix for an element is ob-
tained by introducing the node zero-length. joint element as the
element-end compliance. The modified incremental stiffness
method (Stricklin et al. 1971; Washizu 1975), together with the
displacement increment method (Ramm 1982), is employed as the
numerical procedure.

Assumptions

The following assumptions are made to form the elastoplasnc
tangent stiffness matrix of the element:
1. Members have thin-walled closed or open sections;
2. Cross sections remain planar and do not distort in the ab-
sence of cross-sectional warping;
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Fig. 1. Assumption of generalized plastic strain distribution in an
element
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Transverse shear deformation is negligible;
‘Deflection is large but elastic strain is small;

SN

closed sections, while only axial stress participates for the
members with open sections;

6. Plastic deformation consists of only four components,
which correspond to axial force, biaxial bending moments,
and torsional moment (for members with closed sections)
or bimoment (for members with open sections);

7. There is no local buckling;

8. Although actual generalized plastic strain in a short element
is generally distributed nonlinearly [Fig. 1(a)], the distribu-
tion is assumed to be linear with the values at element
nodes i and j [Fig. 1(b)];

9. In addition to assumption 8, the concentration of the plastic

" deformations in the two /2 portions of the element into the
plastic hinges of zero length at element nodes i and j is
assumed, where [ is the length of the element; and

10. " In the connection of two or more members (e.g., a beam-
column connectlon) the warping is restrained.

Geometrically Nonlinear Stiffness Matrix

The initial element coordinate systems (x,yz) and (%.7,7) are
_shown in Fig. 2 for an element of a general open section. The x
axis is perpendicular to the cross section and passes through the
centroid O of the end cross section; the y and z axes are the
principal axes of the cross section at node i. A parallel set of axes
X, ¥, Z pass through the shear center S of the cross section at node
i. The strain-displacement relationship adopted here is

Q:[in Fy‘i in Mxi Myi Mzi Muu‘

P ) e e e e e re
—f[ui v Wy exi eyi ezl exi

i H

where F; denotes the force in the k direction at node 5, My,
denotes the bending or torsional moment about the & axis at node
l;and M, . denotes the bimoment at node I. Components of ¢° are
the corresponding elastic displacements. The rotation matrix for
large rotation (Crisfield 1997) was used to determine the succes-
sive element coordinate system and the nodal total local displace-

Axial stress and the shear stress due to St. Venant torsion -
participate in the yielding of the fibers of members with.

-R=out-of-balance force vector; and Q and ¢°
- tor and nodal elastic displacement vector of an element, respec-

~——

Fig. 2. Element coordinate system and components of generalized

stress and strain
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where u, v, and w are the displacements of an arbitrary point in
the x, y, and z directions, respectively. These values are related to
the displacements uq of the point on the x axis, vy, and Wo, and
the rotation angle s, of the point on the ¥ axis as

dl)o dWo dlIJO

MY G T g O dx o

v=v9— 2o
w=wotJlg .
where o =normalized warping function about the shear center.
Substituting Eq. (2) into Eq. (1) and utilizing the modified incre-
mental stiffness method (Stricklin et al. 1971; Washizu 1975), we
obtain the following equation:
' dQ+R=K*dq° R BN E))

in which K*f= geometrically nonlinear tangent stiffness ‘matrix;
=nodal force vec-

tively. Q and g° have the following components:

T
v Fuy My My My Ml

e [4 e 4 e e relT
u; v; wi 83 8y sz 0, )

ments. Therefore, some components of the total nodal local dis-
placements that are contained in K* at the last known state (the
reference configuration) are as follows if the element is in the
elastic range: uj=v{=w;=vi=w;=0, and 8%;=—0;;. Cubic
functions for vy, wg, and ¥, and a linear function for u, are

adopted as displacement fields.
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Estimation of Plastic Deformation Increments

In the present formulation, the plastic deformation increment of
an element is estimated utilizing a tangent coefficient matrix for
the cross section. The tangent coefficient matrix is obtained by
numerical integration of the tangent stiffnesses of the fibers that
compose the element,

Incremental Stress-Strain Relationship of a Fiber

For a member with a thin-walled closed section, using the von
Mises yield condition, associated flow rule, and Ziegler’s harden-
“ing rule, we can obtain the following equation (Armen et al.
1970; Shugyo et al. 1995) from assumption 5:

do)| |Pu Dunl(de de
= =D ©)
dv| Dy Dpjldy dy
where o =normal stress due to axial force and bending moments;
and t=shear stress due to St. Venant torsion,

For a member with a thin-walled open section, the inctemental
stress-strain relationship of a fiber is expressed as

do=Ede (6)

where o =normal stress due to axial force, bending moments, and
bimoment; and E,=tangent modulus of the uniaxial stress-strain
relationship of a fiber.

Plastic Tangent Coefficient Matrix for a Section

5

Thin-Walled Closed Section o
The components of the generalized stress vector and generalized
strain vector are shown in Fig. 2. From assumptions 5 and 6, the

f D dA f DhdA

f Do h dA f Dyph?dA
df,= |

fDllz dA fDlth dA

_fDllydA _fDIZhydA

where s=tangent coefficient matrix. Let s° denote the elastic tan-
gent coefficient matrix and let d&; and d&% denote the elastic and
plastic components of d8,, respectively; then

df,=s°dse
d8,=d5¢+ds? an
Substituting Eq. (10) into Eq. (11) yields
48P =(s"1—s"")df, =8df, a2

where 8=plastic tangent coefficient matrix. The elastic tangent
coefficient matrix s is constant for any state of the section.

components of the generalized stress vector f. and generalized
strain vector 8§, for a thin-walled closed section can be written as

f=[fy my m, m]"

SC:[EO (bx ¢y ¢’z]T (7)

where f,=axial force; m,=torsional moment; and m, and

m,=bending moments. The components of 8, are corresponding-

generalized strains. The increments of the generalized stresses are
related to the fiber stress increments by

dfx=fd(rdA, dmx=f dv h dA

dmy=fd0'sz, dmz=-—f doydA ®)

whereas the fiber strain increments are related to the increments
of the generalized strains by

de=degtzdd,~ydd,
dy=hdd, &)

where h=section constant. If the wall thickness of the tube is
constant, h=r for a circular hollow section and h=ab/(a+b)
for a rectangular hollow section, where r is the mean radius, a is
the mean width, and b is the mean depth of the section (Teh and
Clarke 1999). Substituting Egs. (5) and (9) into Eq. (8), we obtain
the incremental generalized stress-generalized strain relationship

DyydA

Doshz dA

f D“Z dA

dd,=sd3, (10)

D1122dA D“}’Z dA

-
- f Dyhy dA
|

“‘f Dnyz dA f D11y2dA

Thin-Walled Open Section
We can obtain the plastic tangent coefficient matrix § for an open
section in the same way as described above using Eq. (6) instead
of Eq. (5) (Chen and Atsuta 1977). The components of the gen-
eralized stress vector f, and generalized strain vector &, for a
thin-walled open section are

L= my my, Myt

5o=[€0 ‘:by cbz ‘bm]T

where m,=bimoment; and ¢, =corresponding generalized strain.

For both closed and open sections the components of the tan-
gent coefficient matrix can be obtained by numerical integration.
Fig. 3 shows the partitioning of the cross section used in the

13)
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(b) H-section

(2) Hollow circular section

Fig. 3. Partitioning of a cross section

analyses described later. The stress and the tangent stiffness in
each fiber are obtained as the average values at its centroid. The
“tangent stiffness method” (Chen and Atsuta 1977) can be used
to determine the matrix s.

Estimation of Plastic Deformation Increments

Now, let us define the plastic deformation increments in the plas-
tic hinges dqf and dqf as

dgf=[du? 0 O do%, dob, dof 0]

dqf=[dwf 0 0 4o, der. dor, 017  (14)
for an element with a thin-walled closed section and

dgf=[du? 0 0 0 +d0% 482, doyf]”

dg=[du? 0 0 0 d8%, doz, 4o (15)

for an element with a thin-walled open section; -which are the
deformation increments due to the generalized plastic strain in-
crements of an element. These plastic deformation increments can
be obtained as described below.

The generalized stresses at the element ends are obtained by
the nodal forces at the last known state with their coordinate
transformation. (Note that the i-node cross section is the negative
plane about the x and ¥ axes.) Using these generalized stresses,
we can obtain the plastic tangent coefficient matrices §; and §;
utilizing the procedure explained above. Representing the compo-
nents of §; by (§;);, a new square matrix s{ of the seventh order
can be obtained as follows:

(S 0 0 (S (§p)i (S1a)i O
0 0 0 0 0 0 0
0 0 0 0 0 0 0

si=| (S21); 0 0 (8w (S3)i ($24i O|  (16)

(83a): 0 0 (832 ($33); (§34); O
($a: 0 0 (8p); ($43)i (Saa); 0

0 00 0o 0 0 0]

4
. | '
i l .ﬁi
e% | &7
A NG"
i<—;l/2~><——l/2—>j
< l >~

Fig. 4. Assumed plastic curvature distribution in an element

for a closed section element and

(S 0 0 0 (B Gia)i (S14)]
0 0 0 0 0 ) 0 0
0o 000 0 0 0
g= 0 000 0 0 0 an
(§a; 0 0 0 ($22); ($23); (820
($3; 0 0 0 (83); ($ma)i (830)s
| (8a)i 0 0 0 (Sa2)i (Sa3)i (S4a)i ]

for an open section element. Another new matrix s that cotre-
sponds to §; can be similarly obtained. In the case of uniaxial
bending, the plastic curvature increment is distributed as shown in
Fig. 4 from assumption 8. Hence the plastic rotation increment at
the element end i can be expressed as follows using the trapezoi-
dal rule from assumptions 8 and 9:

11 1 l 3d¢§,’i+d¢1y’j

— 0=y 5 | At 3 (o o) = 5 =
(18)
The plastic deformation increments at the element end i can be

obtained by extending Eq. (18), considering that the i-node sec-
tion is a negative plane and expressed as

p L 3HAQimdQ

Similarly, for the element end j
k ! —s{’dQ,--FBSfde
d‘lj—'i' — (20)
Rearranging Egs. (19) and (20), we obtain
dgf| 13 s [in]
= — = 2
{dqj? o [N | P $dQ @1

Deformation Increments in Semirigid Joints

The matrix s? in Eq. (21) is a compliance matrix that relates the
nodal plastic deformation increment vector to the nodal force in-
crement vector. Almost the same expression can be written for the
deformation increment vector in a semirigid joint at node i if the
interaction effects are negligible (Shugyo et al. 1996; Shakourza-
deh et al. 1999), as follows:

00 0 0 0 0 0
0 0 O 0 0 0 0
0 0 O 0 0 0 0 ‘
dgi={0 0 0 (cu) O 0 0 |dQ=cdQ;
0 0 0 0 (C55)1 0 0
0 0 0 0 0 (CG6>i 0
_O 0 0 0 0 0 (C77)i_
(22)

where dqj=deformation increment vector in the zero length
semirigid element at node {. Similarly, we can obtain the matrix ¢;
for node j and hence.

dq*=cdQ 23)
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Fig. 5. Test arrangement for cantilever beam

If the interaction curve for the semirigid joint is given, the inter-
action effects may be introduced into the matrix ¢ using plastic
theory. .

Elastoplastic Tangent Stiffness Matrix

Assuming that the total displacement increment dq is the sum of
the elastic displacement increment dq°, the plastic deformation
increment dq”, and the deformation increment in the zero-length
semirigid elements dq°, we obtain

dq*=dq—dq’—dq* ‘ (24)

From Eq. (3) the linearized relationship between dQ and dq° is
given as dQ=K°dq°®; hence

dQ=Kedq—K¢(dg?+dq*) (25)
Substituting Eqs. (21) and (23) into Eq. (25), we obtain
dQ=K¢dq—K*(s"+¢)dQ (26)

Rearranging Eq. (26) and again introducing the concept of modi-
fied incrementat stiffness, we can obtain the following equation:

dQ+R=[I+K¢(s?+¢)] K?dq=K"dq 27

where I=unit matrix; R=out-of-balance force vector; and K?
=elastoplastic tangent stiffness matrix. The numerical analysis
can be conducted by Ramm’s displacement increment method
(Ramm 1982) using Eq. (27). The coordinate transformation ma-
trix of an element is updated and the total fiodal local displace-
ments are recomputed by separating the rigid body displacements
at each step by using the rotation matrix. R is obtained from
explicit expressions using the elastic total nodal local displace-

/7 P
Aé‘ // T \\
s an
Ci cm \\\L///
P —
l l
M Ll
I /{Y 21 2
4 A Iy '
4 Q;*X Dy De
P A-A section

Fig. 6. Scheme of loading and measuring system

ments, which can be obtained by subtracting the sum of the plas-
tic deformation increments and the deformation increments in the
semirigid elements from the total nodal local displacements.
The use of the modified incremental stiffness method may
cause a significant error if the size of the displacement increment -
is not appropriate. Therefore, the writer used the following pro-
cedure to determine the size of the displacement increment. (1)
Examine the magnitude of the géneralized strain increments in the
last step for all elements and obtain the maximum value. (2) De-
termine the size of the displacement increment of the next step
using the sizes of the displacement increment and maximum gen-
eralized strain increment in the last step so that the maximum

35 - .
Experiment
30 [{--e-e--- Present analysis
.| —--— Present analysis .
- 95 | (effect of torsional stress neglected) |.
z T e s =
& .20 o T
A e
~ 15 AN R SO DU AUUUNY U S
o) /.
310
5 //
0 - -
0 0.4 0.8 1.2° 1.6 2
Deflection ¢ (cm)
30 :
25
. o /
é 20 %
A 15 //
—g .....................
Q 10 ,
3 Ve
v

0 .
.0 0.02 0.04 0.06 0.08 0.1
Torsional angle 8 (rad)

Fig. 7. Load-deflection and load-torsional angle relationships at tip
of beam (hollow circular section)
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Fig. 8. Load-deflection and load-torsional angle relationships at tip
of beam (H section)

value of the generalized strain increment in the next step is less
than the prescribed standard value. As the standard value for all
the following examples, the writer used a value of 0.01, which is
the nondimensionalized value determined by the initial yield
value of each element.

Numerical Examples

Cantilever Beams Subjected to Shear Force
and Torsional Moment

The adequacy of the present method in determining the bending-
torsional behavior of a beam is examined by comparing the re-
sults with experimental results of cantilever beams subjected to
shear force and torsional moment. Fig. 5 shows the test arrange-
ment. The test specimens were two steel beams, one with a hol-
low circular section and one with an H section. Both specimens
were annealed at 630°C for 1 h. The sizes and mechanical prop-
erties of the specimens are as follows: outside diameter of the
cross section D,=10.17 cm, thickness 7,=0.41 cm, length [,
=55.30 cm, Young’s modulus £,=207.8 GPa, yield stress 0,

=299.9 MPa for the beam with the hollow circular section; and -

width of the section W;,=10.10 cm, depth D, =10.00 cm, flange
thickness #,= 0.77 cm, web thickness ¢,=~0.57 cm, length [,
=51.40 cm, Young’s modulus E,=205.8 GPa, yield stress o,
=271.5 MPa for the beam with the H section.

Fig. 6 shows the scheme of the loading and measuring system.
The distance from point B to point C in the figure is 73.0 cm. The

L=481in

D =1.682 in
t=0.176 in

F = 28800 ksi
G = 11520 ksi

Columns: gy = 30.6 ksi
Beams: oy = 31.1 ksi

Fig. 9. Harrison’s (1964) space frame

load P causes the shear force P, the bending moment M, and the
torsional moment T at the tip of the test specimen (A-A section),
where M=3P and T=73cos 6 P. The H beam was set so. the
weak axis of the cross section was aligned with the direction of
the shear force. The warping of both end sections was restrained
by end plates 3.0 em thick. The vertical deflection & and torsional
angle 6 can be obtained from the outputs of two displacement
gauges 8 and 8, as follows:

8=(81+82)/2
9=»tan_1[(82~—81)/ld]

In the numerical analyses, the elastic shear moduli G,
=FE /2.6, G,=E,/2.6 and strain hardening moduli in the elasto-
plastic range H,=E /100, H,= E;/100 were assumed in addition
to'the above-mentioned material constants. Considering assump-
tion 8 of the method, the beam was divided into two elements by
the node at a point 1/5 of the beam length. The relationships of
load versus vertical deflection and load versus torsional angle at
the beam tip are shown in Figs. 7 and 8. The dot-dashed lines in
the figures are the curves for the cases where the effects of tor-
sional and warping stresses for plastic behavior are neglected.
Although some errors are present, the figures show that this
method gives an accurate result for a beam member. Since the
torsional deformation in the H beam specimen is produced mainly

(28)

2 : — : :
.| Test (Harrison 1964) |
feeenee Present analysis

e =t § o]

04 /’

0 1 2 3 4
Horizontal sway of right eave (in)

Fig. 10. Load-displacement curves for Harrison’s (1964) space
frame
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Fig. 11. Semirigid rectangular frame SRF5 (Liew et al. 1997)

L,=302.5 crn —

by the in-plane bending of the flanges due fo section warping, the
restoring force for the H-beam specimen increases considerably
after the initial yielding.

Three-Dimensional Frame

The adequacy of the present method on the elastoplastic behavior
of a 3D frame is examined by using the equilatéral triangular

space frame tested and analyzed by Harrison (1964) and by.Teh

and Clarke (1999) (Fig. 9). The properties of the members are
given in the figure. All members are steel pipes with hollow cir-
cular section. In the present analysis, each member was modeled
in the same manner as by Teh and Clarke (1999), that is, each
column was modeled with four equal-length elements, while the
beams were modeled with two or six equal-length elements con-
sidering the loading condition. The strain hardening modulus H
“E/IOO was assumed, whereas Teh and Clarke (1999) assumed
H 0.

F1g 10 compares the relationship between the honzontal load
and the horizontal sway of the right eave. The result of the present
'method agrees with the numerical results of Teh and’ Clarke
(1999) in the elastic range; the restoring force in the elastoplastlc
range is slightly small in compatison with the other two results.
As is ‘obvious from assumption 8, the present method overesti-
mates somewhat the plastic deformation of a structure.

Semmgld Rectangular Frame

L1ew et al. (1997) carried out a series of tests on a Vanety of
semmgld rectangular frames with H beams and H columns ‘The
test frames can be used for a calibration of analysis method. Fig.

100
| ——— Test(Liew et al. 1997)

------- Approximate curve

380
§ M = T6tan~1(30%7) +11.2 ..
o B
E e e Y S M S o

/d

-2 o
g 40 e

K =

kS 2

8
S
PN

0 0.05 0.1 0.15 0.2
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240
—— Test(Liew et al. 1997)
—_ i Approximate curves
a 180 M= 110tan‘1(50°'28) —-26 (0 é M<T6
5 M = 144tan—1(56%48) (76 £ M)
N— Iy L
g
S 120 e :
= ,.9/
: u
& o0 |47 :
=
0
0 , 0.025 0.05 0.075 0.1
' ~ Rotation (rad)

Fig. 13. Moment-rotation curve for column base (CB2)

11 shows the dimensions of the SRF5 frame. The sizes and me-
chanical properties of the columns and the beam are as follows:
depth D=20.96 cm, width B=20.52cm, flange thickness ty
=142cm, web thickness f,=093cm, yield stress o,
=336.0 MPa for the columns, and D=25.6 cm, -B=14.64 cm,
t;=1.09cm, ¢,=0.64 cm, 0,=345.0 MPa for the beam. The
moment-rotation relationships for the beam-to-columa connection
and for the column base obtained by the tests are shown in Figs.

12 and 13, The dotted lines in the figures are the approximate

curves used in the present analysis, .

In the numerical analyses, the Young’s modulus FE
=205.8 GPa, shear modulus G=E/2.6, and strain hardening
modulus H=E/100 were assumed. The beam was divided into
three elements of equal length, while the column was divided into
four elements by the nodes at points 1/10, 1/2, and 9/10 of the
column length.,

In Fig. 14, the horizontal load—lateral d1splacement curve of
the SRF5 frame is compared with the analytical result from the
present method. The figure shows that the present method has
good accuracy and can trace the load-displacement curve after the
maximum load.

Hexagonal Frame with Semirigid Joints

Elastic Analysis
The hexagonal frame shown in Fig. 15 has been analyzed by
many researchers to check the accuracy of the numerical method

100 — 1
Z ] —— Test(Liew et al. 1997)
4 - ——- PHINGE(Liew et al. 1997)
na] e Present analysis
=
<
vS 50 T
e tvecdenan, T
E g )f\\
= // -}
8 25
B
v
an)
0

0 40 80 120 160 200
Lateral Displacement A(mm)

Fig. 12, Moment-rotation curve for beam-column joint (JSRF5)

Fig. 14. Comparison of load-displacement curves for SRFS
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Fig. 15. Hexagonal frame

for analyzing the elastic large deflection behavior of space frames.
The properties of the member are as follows: Young’s modulus
E=3.032 GPa (439.8 ksi), shear modulus G=1.096 GPa (159.0

ksi), cross-sectional areaA 3.187 cm? (0.494 in.%), torsional sec-’

tion constant J= 1.378 cm* (0.0331 in.*), and moments of inertia
1,=1,=0.832 cm* (0.02 in.%). In the present analysis, each mem-
ber was divided into four elements of equal length.

- Fig. 16 compares the load-displacement curve for the rigid
frame with those obtained by Chan and Zhou (1994) and by Liew
et al. (1999). The curve obtained by the present method agrees
closely with other results.

The dotted line and the dot-dashed line are the load-
displacement curves for the cases in which both ends of six roof
members have semirigid joints and pin joints, respectively, The
compliances of the semirigid joints were assumed as 0 for axial
force, shear force, and torsional moment, and L/(2EI v
L{(2El,)-for bending moments, where L is the member length
For the pin joints, the same assumptions were employed except
that L/(10™ 8EI),) and L/(1073ET ) were used as the compliance
for bending moments. The dot-dashed line, which passes through
the points (1.75,0) and (3.5,0), shows the adequacy of the method
for the analysis of a pin-connected frame.

Elastoplastic Analysis
The results of elastoplastic analyses of the same hexagonal frame
- with member properties different from the above example are
given in Fig. 17. The member was assumed to be a steel pipe with
a circular section having cross-sectional area A=3.187 ci®. The
member properties are as follows: diameter D =4.674 cm, thick-
ness t=0.228 cm, Young’s modulus £=210.0 GPa, shear modu-
lus G=80.77 GPa, yield stress o, =300.0 MPa, and strain hard-
ening modulus H= E/100. Each member was modeled with four
equal-length elements. The dotted line and the dot-dashed line in

150
x x x Chan and Zhou 1994, and
Liew et al. 1999
10 Present analysis (rigid) ,
—_ N R Present analysis (serni- ngxd)
é —-—- Present analysis (pin)
& 50
woo a
?g }Z; %‘}x 2( ¥
- o \’%&w‘)g( i
N /
\‘\ '/'
-50 =
0 1 2 3 4

Vertical displacement § (in)

Fig. 16. Load-vertical displacement curves of hexagonal frame
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Fig. 17. Load-vertical displacement curves of steel pipe hexagonal
frame

the figure indicate the results for the semirigid. and the pin-
connected frames. The pin-conhected frame did not yield. The
result for the rigid frame shows that the load after the frame
ylelded does not vary acutely. :

Conclusion

‘An advanced plastic hinge method for accurate analy31s of elas-

toplastic large deflection of three~d1mens1onal steel frames with
semirigid joints was presented. The effect of shear stress due to
St. Venant torsion on the plastic behavior of a member with a.
closed section js considered using the von Mises yield criterion,

the associated flow rule, and- Ziegler’s hardening rule. The
method can be used for the analyses of frames that have open-
section members, which cause section warping. It was shown that
the use of the modified incremental stiffness method (Stricklin
et al. 1971; Washizu 1975) and the updated Lagrangian formula-
tion, together with a precise estimation of the plastic deformation
of an element, gives an accurate result for the 3D analysis of steel

. frames. The method does not require a database of the yield sur-

faces of cross sections and can be introduced in an existing finite-
element method code. The adequacy of the method was verified
by comparing the results with the writer’s experimental results,
The accuracy and efficiency of the method were examined
through the use of several examples. The results of those exami-
nations demonstrated that an approximation of four elements for a
member considering the method’s assumptions gives excellent re-
sults for the 3D analysis of semirigid and pin-connected frames as
well as for rigid frames,
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