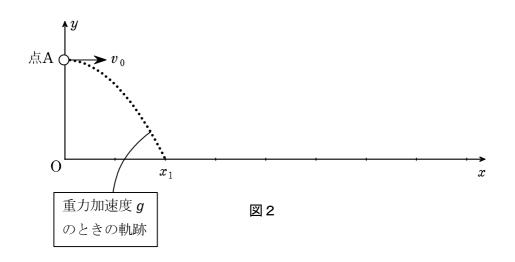
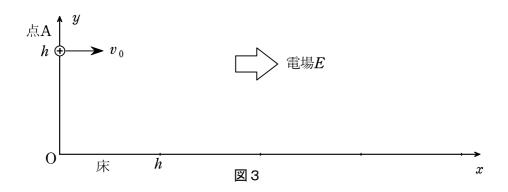
高度な記述式問題(物理) 【サンプル問題】(解答時間60分)

I 次の文章を読み以下の問に答えよ。


図1のように地球上で、質量mの小球を、水平な床からの高さhの点Aから、速さ v_0 で水平方向に投げ出した。点Aの鉛直下方向の床上の点を原点Oとし、図のようにx、y軸をとる。重力加速度の大きさをgとし、この小球にはたらく空気抵抗力は無視できるものとする。


(1) 床に落下するまでの時間 t_1 及び落下した点と原点 \mathbf{O} との距離 x_1 を求めよ。

(2) 同じ実験を重力加速度の大きさが $\frac{1}{6}$ g の月面で行った。地球で行った時,投げてから床に落下するまでの小球の軌跡が**図2**で表される点線であるとき,月面で行ったときの軌跡の概形を実線で記入し,なぜそうなるかを説明せよ。必要があれば次の数値を用いてよい。

$$\sqrt{2} = 1.4$$
 $\sqrt{3} = 1.7$ $\sqrt{6} = 2.4$ $\frac{1}{\sqrt{2}} = 0.7$ $\frac{1}{\sqrt{3}} = 0.6$ $\frac{1}{\sqrt{6}} = 0.4$

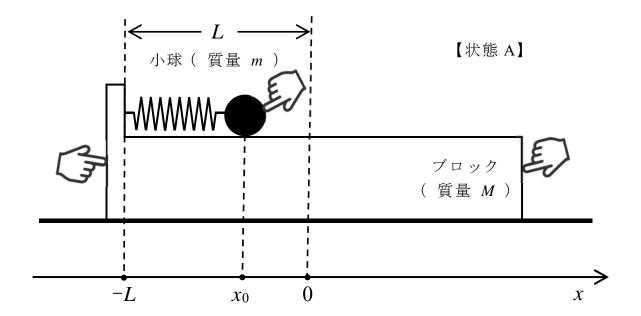
次に、地球上で、図3のように質量mの小球に電気量q(q>0)の正の電荷を加え、更に水平方向に一様な電場E(E>0)を加えた。その後、点Aから電場の方向に小球を速さ v_0 で投げ出した。点Aの鉛直下方向の床上の点を原点Oとし、図のようにx、y 軸をとる。重力加速度の大きさをgとし、この小球にはたらく空気抵抗力は無視できるものとする。

- (3) 床に落下するまでのまでの時間 t_2 及び落下した点と原点Oとの距離 x_2 を求めよ。
- (4) 床と衝突直前の小球の速さvを、 x_2 を用いて求めよ。
- (5) 小球の運動の軌跡は放物線となる。 mg=qE のとき, 軌跡の概形を実線で書け。

 $oxed{II}$ 図に示すように、滑らかで水平な面の上に、質量 M の上面が滑らかなブロックを置き、水平方向右向きに x 軸をとる。ブロックの上に、自然長 L (L>0) の軽いバネ (バネ定数 k) を置く。バネの左端はブロック上に固定し、右端には質量 m の小球を取りつける。最初、バネの左端を x=-L の位置に、右端を $x=x_0$ の位置まで縮めた状態となるように、小球とブロックを静止させる。この状態を【状態A】とする。

小球の位置を x_m , 速度を v_m , 加速度を a_m , ブロックの重心の位置を x_M , 速度を v_M , 加速度を a_M とする。手を離す前のブロックの重心は x=0 上にあり、小球はブロックの上のみを運動するものとする。速度の向きは水平方向右向きを正とせよ。また、図に示すように、最初にバネが縮んでいる場合、 x_0 は負の値になることに留意せよ。

解答にあたって, 根拠を記述したうえで式を立て, 最終的な解答に至る過程を記せ。


最初に,ブロックからは手を離さず,ブロックを静止させた状態で,小球だけから手を離すと、小球は水平方向に運動を開始した。

(1) 小球の速度が最大となるときの v_m の値を求めよ。

続いて、いったん【状態A】に戻した後に、今度は小球とブロックから全ての手を同時 に離すと、小球、ブロックともに水平方向に運動を開始した。

- (2) 小球とブロックに働く、水平方向の力を図示せよ。解答欄に、自分で作図すること。 さらに、小球とブロックに関する運動方程式を、それぞれ記せ。
- (3) バネの長さが初めて自然長になった瞬間の v_m と v_M を,それぞれ求めよ。さらに、それらを求めるにあたって必要な式を記せ。

- (4) バネの長さが最大になった瞬間の v_m と v_M , および, ブロックに対する小球の速度 v_{mM} は、いずれも 0 となる。その理由を説明せよ。
- (5) 小球とブロックは、ともに単振動をすることを示し、その周期を求めよ。

