年度 2009 学期 後期	曜日•校時 木•2	必修選択 選択	単位数 2
授業科目/(英語名)	化学の基礎(化学反応とエネルギー Chemical Reactions)	ーの関係) / Introduction to Chemistry	(Energy Transfer in
対象年次 1・2 年次	講義形態 講義	教室	
対象学生(クラス等)	全学部	科目分類 自然科学科目	

担当教員(科目責任者) / Eメールアドレス/研究室/TEL/オフィスアワー

担当教員: 田辺 秀二 /Eメールアトレス: s-tanabe@nagasaki-u.ac.jp /研究室: 工学部材料工学科(総合教育研究棟7F 709号室) /TEL:095-819-2659/オフィスアワー: 月曜日 18:00~19:00 (毎週)

担当教員(オム

ニバス科目等)

授業のねらい/授業方法(学習指導法)/授業到達目標

授業のねらい:

物質の構成要素である分子の結合エネルギーから、化学反応における反応熱の意味を考え、さらに、反応熱からいろいろな熱力学的な状態変数を導くことで、化学反応の熱力学的な考察を行う。

授業方法:

講義形式で行う。教科書は用いず、適宜プリントを配布する。講義の内容をまとめ、講義ノートを作成する。

授業到達目標:

原子、分子の構造から化学結合の種類を理解し説明できる。結合エネルギーと反応熱の仕組みを理解し説明できる。化学反応における活性化エネルギーを理解し、説明できる。

授業内容(概要) /授業内容(毎週毎の授業内容を含む)

授業内容(概要)

原子の構造、電子配置から、分子の構造、化学結合について講義する。化学反応の仕組みを講義したあと、反応熱について説明する。反応熱の熱力学的な意味を考察する。さらに、反応速度的な観点から、活性化エネルギーを説明する。

- 第 1回 オリエンテーション
- 第 2回 原子の構造
- 第 3回 電子配置と周期律
- 第 4回 分子の構造と分子軌道
- 第 5回 化学結合:共有結合
- 第 6回 化学結合:イオン結合と金属結合
- 第 7回 化学反応
- 第 8回 反応熱と結合エネルギー
- 第 9回 ヘスの法則
- 第10回 エンタルピー変化とエントロピー
- 第11回 自由エネルギーの意味と計算方法
- 第12回 化学平衡
- 第13回 反応と反応速度
- 第14回 反応速度と活性化エネルギー
- 第15回 講義のまとめ(試験を含む)

キーワード	
教科書·教材·参考書	参考書:
	・アトキンス物理化学第6版(上・下)東京化学同人
	・入門化学熱力学 山口喬著 培風館
	•基礎化学結合論 小林常利著 培風館
成績評価の方法・基 準等	成績は最終試験のみで評価する。最終試験で60%以上の得点を合格とする。
受講要件(履修条件)	なし
	欠席の取り扱いは全学教育の規程に従う。
本科目の位置づけ	科目の位置づけは自然科学の基礎に該当する。化学結合と反応熱の関係、熱力学の第1,第2法則
/学習·教育目標	が理解できること
備考(準備学習等)	高校の化学の内容を復習しておくこと。
	対数、平方根などが扱える関数電卓が必要。